Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation.

نویسندگان

  • Ju Mei Liu
  • Feng Pan
  • Li Li
  • Qian Rong Liu
  • Yong Chen
  • Xin Xin Xiong
  • Kejun Cheng
  • Shang Bin Yu
  • Zhi Shi
  • Albert Cheung-Hoi Yu
  • Xiao Qian Chen
چکیده

Piperlongumine (PL), a natural alkaloid isolated from the long pepper, may have anti-cancer properties. It selectively targets and kills cancer cells but leaves normal cells intact. Here, we reported that PL selectively killed glioblastoma multiforme (GBM) cells via accumulating reactive oxygen species (ROS) to activate JNK and p38. PL at 20μM could induce severe cell death in three GBM cell lines (LN229, U87 and 8MG) but not astrocytes in cultures. PL elevated ROS prominently and reduced glutathione levels in LN229 and U87 cells. Antioxidant N-acetyl-L-cysteine (NAC) completely reversed PL-induced ROS accumulation and prevented cell death in LN229 and U87 cells. In LN229 and U87 cells, PL-treatment activated JNK and p38 but not Erk and Akt, in a dosage-dependent manner. These activations could be blocked by NAC pre-treatment. JNK and p38 specific inhibitors, SB203580 and SP600125 respectively, significantly blocked the cytotoxic effects of PL in LN229 and U87 cells. Our data first suggests that PL may have therapeutic potential for one of the most malignant and refractory tumors GBM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piperlongumine Inhibits Migration of Glioblastoma Cells via Activation of ROS-Dependent p38 and JNK Signaling Pathways

Piperlongumine (PL) is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS) responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG) cells but not normal astrocytes in the scratch-wo...

متن کامل

Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP

Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP si...

متن کامل

Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer

Adaptation to cellular stress is not a vital function of normal cells but is required of cancer cells, and as such might be a sensible target in cancer therapy. Piperlongumine is a naturally occurring small molecule selectively toxic to cancer cells. This study assesses the cytotoxicity of piperlongumine and its combination with cisplatin in head-and-neck cancer (HNC) cells in vitro and in vivo...

متن کامل

Reactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells

Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...

متن کامل

Inhibition of JNK potentiates temozolomide-induced cytotoxicity in U87MG glioblastoma cells via suppression of Akt phosphorylation.

Glioblastoma (formally glioblastoma multiforme, GBM) represents both the most common and most malignant variant among numerous of primary brain tumors. Temozolomide (TMZ) has been used for the treatment of glioblastoma. However, less than 1/3 of glioblastomas respond to TMZ-based therapies. Therefore, strategies to enhance the effect of TMZ are needed for more effective targeted therapeutics. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 437 1  شماره 

صفحات  -

تاریخ انتشار 2013